

National Aeronautics and Space Administration

2000 - 2001

Space Shuttle

2000

STS-99 (Shuttle Radar Topography Mission)

Endeavour Pad A

97th Shuttle mission 14th flight OV-105 50th KSC landing

Crew:

Kevin R. Kregel, Commander (4th Shuttle flight)
Dominic Gorie, Pilot (2nd)
Janet L. Kavandi, Mission Specialist, (2nd)
Janice Voss, Mission Specialist, (5th)
Mamoru Mohri, Mission Specialist (2nd),
National Space and Development Agency
of Japan
Gerhard P.J. Thiele Mission Specialist (1st),
European Space Agency

Orbiter Preps (move to):

OPF bay 2 -- Dec. 16, 1998 **VAB** -- Dec. 2, 1999 **Pad 39A** -- Dec. 13, 1999

Launch:

Feb. 11, 2000, at 12:43:40 p.m. EST.

STS-99 faced a series of launch delays and one scrub before launching successfully. The mission was originally scheduled to fly on Sept. 16, 1999. But in mid-August, the launch date was postponed until October because of wiring concerns throughout the Shuttle fleet. With so much of Endeavour's wiring requiring inspection, the target date for launch was shifted to no earlier than Nov. 19. Shuttle managers later decided to preserve the option to launch either STS-99, or STS-103, the Third Hubble Servicing Mission, first. It was decided in October that STS-103 would fly first, and the launch of STS-99 was set for Jan. 13, 2000. In December that date came under review, and a new launch date of no earlier than Jan. 31 was set.

The scheduled launch on Jan. 31, 2000, was scrubbed because of unacceptable weather conditions. However, late in the count, an anomaly occurred with the No. 2 enhanced master events controller (EMEC), which also would have prevented the launch on that day. The EMEC was removed and replaced and the launch re-

scheduled until 12:30 p.m. EST on Feb. 11. About three hours prior to the scheduled launch, an unexpected pressure drop was detected in hydraulic system 1. The pressure drop was determined to be the result of a normal sequence of prelaunch events. Discussions of the pressure drop resulted in a 13-minute, 40-second launch delay.

Landing:

Feb. 22, 2000, 6:22:23 p.m. EDT.

Runway 33, Kennedy Space Center, Fla. Rollout distance: 9,943 feet. Rollout time: 1 minute, 2 seconds. Mission duration: 11 days, 5 hours, 38 minutes. Landed on orbit 181. Logged about 4.7 million statute miles. Landed on the second of two Florida landing opportunities. The first opportunity was at 4:50 p.m., but cross winds at the Shuttle Landing Facility violated established weather constraints. The landing marked the 21st consecutive landing at KSC, and the 50th landing at KSC overall.

Mission Highlights:

The Shuttle Radar Topography Mission mast was deployed successfully to its full length, and the antenna was turned to its operation position. After a successful checkout of the radar systems, mapping began at 12:31 a.m., less than 12 hours after launch. Crew members, split into two shifts so they could work around the clock, began mapping an area from 60 degrees north to 56 degrees south. Data was sent to Jet Propulsion Laboratory for analysis and early indications showed the data to be of excellent quality.

Mapping proceeded fairly smoothly, but during an attitude-hold period for payload mapping during the second day of flight, it was determined that orbiter propellant usage had doubled from 0.07 to 0.15 percent an hour. The increase was caused by a failure of the payload cold-gas thrust system that was used to offset the gravity gradient torque of the mast.

As a result of this failure, orbiter propellant was being used at a higher-than-planned rate to maintain the attitude of the vehicle. Measures to reduce the expenditure were evaluated and based on the analysis, enough propellant could be saved to complete the planned 9-day plus science mission.

The first of a series of "flycast" maneuvers during the mission was also made on the second day of flight. The flycast maneuver was designed to reduce strain on the almost-200-foot mast extending from Endeavour's cargo bay when adjustments to Endeavour's orbit were needed.

The orbiter, which flies tail-first during mapping operations, is moved to a nose-first attitude with the mast extending upward. A brief reaction control system pulse begins the maneuver. The mast deflects slightly backwards, then rebounds forward. As it reaches vertical, a stronger thrust is applied, arresting the mast's motion and increasing the orbiter's speed.

Radar data gathering concluded at 6:54 a.m. EST on the tenth day of flight after a final sweep across Australia. During 222 hours and 23 minutes of mapping, Endeavour's radar images filled 332 high density tapes and covered 99.98 percent of the planned mapping area – land between 60 degrees north latitude and 56 degrees south latitude – at least once and 94.6 percent of it twice. Only about 80,000 square miles in scattered areas remained unimaged, most of them in North America and most already well mapped by other methods. Enough data was gathered to fill the equivalent of 20,000 CD's.

Also aboard Endeavour was a student experiment called EarthKAM, which took 2,715 digital photos during the mission through an overhead flight-deck window. The NASA-sponsored program lets middle school students select photo targets and receive the images via the Internet. The pictures are used in classroom projects on Earth science, geography, mathematics and space science. More than 75 middle schools around the world participated in the experiment, which set a record. On four previous flights combined, EarthKAM sent down a total of 2,018 images.

STS-101 (ISS Flight 2A.2a)

Atlantis Pad A

98th Shuttle mission 21st flight OV-104 22nd consecutive KSC landing

Crew:

James D. Halsell Jr., Commander
(5th Shuttle flight)
Scott J. "Doc" Horowitz, Pilot (3rd)
Mary Ellen Weber, Mission Specialist (2nd)
James S. Voss, Mission Specialist (4th)
Jeffrey N. Williams, Mission Specialist (1st)
Susan J. Helms, Mission Specialist (4th)
Yury Usachev, Mission Specialist and
cosmonaut, (1st on Shuttle, twice on Mir)

Orbiter Preps (move to):

OPF 3 – Sept. 27, 1998; Feb. 17, 1999; Sept. 24, 1999
VAB – Dec. 10, 1998 (storage); Feb. 8, 1999 (transfer aisle); July 26, 1999 (storage); Aug. 25, 1999 (transfer aisle); Sept. 1, 1999 (high bay 2); March 17, 2000
Pad A – March 25, 2000

Launch:

May 19, 2000 at 6:11:10 a.m. EDT.

After three launch delays in April caused by high winds at the launch site and overseas emergency landing strips, Atlantis blasted off from KSC's Launch Pad 39A on time. A crew of six American astronauts and one Russian cosmonaut were on their way to pay a "home improvement" house call on the fledgling International Space Station (ISS).

Landing:

May 29, 2000, at 2:20:19 a.m. EDT.

Runway 15, Kennedy Space Center, Fla. Rollout distance: 8892 feet. Rollout time: 62 seconds. Wheel stop occurred at 2:21:17 a.m. EDT. Mission duration: 9 days, 20 hours, 9 minutes and 9 seconds. Landed on orbit 155. Logged 4,076,000 miles. Landed on first opportunity at KSC, marking the 22nd consecutive landing in Florida and 29th in the last 30 missions. Also the 14th nighttime landing in Shuttle history.

Mission Highlights:

On their 10-day mission, the astronauts completed one spacewalk (EVA), equipped the ISS with new or replacement gear and transferred more than a ton of supplies into the Space Station for use by future residents of the ISS.

EVA - 6 hours, 44 minutes:

The EVA marked the fifth spacewalk for construction of the ISS, the 49th conducted from a Space Shuttle, and the 85th overall conducted by U.S. astronauts. Mission Specialists James Voss and Jeffrey Williams secured a United States-built crane installed on the Station last year; installed the final parts of a Russian-built crane, Strela, on the Pressurized Mating Adapter-1 that connects the Unity node to the Zarya control module; replaced a faulty antenna for one of the station's communications systems; and installed several handrails and a camera cable on the ISS exterior.

Mission Specialist Mary Ellen Weber operated the Shuttle's robotic arm, which she used to maneuver Voss during much of the spacewalk.

Work inside the Space Station followed. Before entering the Space Station, the crew opened various hatches into and within the different modules, in this order: PMA-2, Unity node, PMA-1, Zarya, and instrumentation cargo compartment on Zarya. Over the course of three days, the crew installed four batteries and associated electronics; 10 new smoke detectors in the Zarya module; four new cooling fans; additional cables for the Zarya computer to enhance capabilities; a new communications memory unit; and a new power distribution box for the U.S.-built communications system.

Next came the transfer of supplies – more than 3,300 pounds of gear ranging from clothes, tools, can openers, sewing kits and trash bags to a treadmill, an exercise bicycle ergometer and IMAX film camera. The crew also filled four 12-gallon water containers for use by future resident astronauts aboard the ISS.

During the mission, Commander Halsell and Pilot Horowitz also fired Atlantis' jets three times to boost the ISS about 27 miles into a slightly higher orbit of 225 miles.

When stowage was complete, the crew reversed the procedure to close the hatches in the Space Station, with the final hatch shut at 4:40 a.m. EDT., May 26.

Undocking with the Space Station occurred at 7:02 p.m. EDT, May 26. Pilot Horowitz backed Atlantis away and then flew a half-circle around the station before firing Atlantis' jets in a final separation burn at 7:41 p.m. EDT.

STS-106 (ISS Flight 2A.2b)

Atlantis Pad B

99th Shuttle mission 22nd Flight of OV-104 52nd KSC landing

Crew:

Terrence W. Wilcutt, Commander
(4th Shuttle flight)
Scott D. Altman, Pilot (2nd)
Edward Lu, Mission Specialist (2nd)
Yuri I. Malenchenko, Mission Specialist (1st)
Boris V. Morokov, Mission Specialist (1st)
Richard A. Mastracchio, Mission Specialist (1st)
Daniel C. Burbank, Mission Specialist (1st)

Orbiter Preps (move to):

OPF Bay 3 - May 29, 2000 **VAB** - Aug. 7, 2000 **Pad 39B** - Aug. 13, 2000

Launch:

Sept. 8, 2000, 8:45:47 a.m. EDT.

STS-106 launched as planned at 8:45 a.m. with no unscheduled holds during the flawless countdown.

Landing:

Sept. 20, 2000, 3:58:01 a.m. EDT.

Runway 15, Kennedy Space Center, Fla. Rollout distance: 9,127 feet. Rollout time: 1 minute 13 seconds. Mission duration: 11 days, 19 hours, 12 minutes, 15

seconds. Landed on orbit 185. Logged 4.9 million statute miles. Landed on first opportunity at KSC, marking 23rd consecutive landing in Florida and the 30th landing of a Shuttle at KSC in the last 31 flights.

Mission Highlights:

STS-106, during its 11-day mission to the International Space Station (ISS), completed all assigned mission objectives to prepare the Station for the first crew scheduled to launch in October. The mission to the 143-foot-long Station focused on unloading nearly three tons of cargo from the orbiter and a Progress supply craft already docked to the opposite end of the ISS.

On flight day two, Atlantis completed a successful rendezvous and docking with the ISS in early morning setting the stage for six days of outfitting

EVA: 6 hours and 14 minutes:

The EVA was completed successfully on day three, 16 minutes ahead of the planned schedule, by Lu and Malenchenko. The spacewalk's objective focused on routing and connecting nine power, data and communications cables between the Zvezda module and the other Russian-built module, Zarya, as well as installing the six-foot-long magnetometer to the Station to serve as a compass showing the Station in respect to the Earth.

Lu and Malenchenko used tethers and handrails along the ISS to make their way to a point more than 100 feet above the cargo bay, the farthest any tethered spacewalker has ventured outside the Shuttle. They completed this with the assistance of their inside crewmates Burbank and Mastracchio who deftly maneuvered them around with the robotic arm. This spacewalk celebrates the sixth spacewalk in support of the Station assembly and the 50th spacewalk in Space Shuttle history.

On flight day four the crew entered the International Space Station through Pressurized Mating Adapter-2 (PMA-2) to begin the transfer operations of more than three tons of hardware and supplies. Atlantis' crew was the first to see the interior of the Russian Zvezda service module since it was launched from the Baikonur Cosmodrome in July. Additionally, a reboost was performed using the orbiter's Reaction Control System (RCS) to place the Station in a higher orbit.

Transfer of supplies and maintenance tasks continued well into the fifth day, while orbiter consumables remain above the required levels allowing managers to extend the mission one additional day.

Activities on flight day five included the installation of three batteries inside Zvezda. In order to reduce the weight for launch, Zvezda was launched with only five of its eight batteries in place.

Lu and Malenchenko spent much of flight day seven installing voltage and current stabilizers in Zvezda. Components of the Elektron system, equipment sent into orbit to separate water into oxygen and hydrogen, were

installed and will be activated after the first crew arrives.

The crew transferred more than 6,000 pounds of material – including six, 100 pound bags of water, all of the food for the first resident crew, office supplies, onboard environmental supplies, a vacuum cleaner and a computer and monitor – to the interior of the Station.

The astronauts spent a total of 5 days, 9 hours and 21 minutes inside the Station before closing the hatch on the orbiting outpost. Wilcutt and Altman commanded a series of four altitude boosts to place the Station in an orbit of approximately 241 by 233 statute miles, raising the average altitude by 14 miles. After spending 7 days, 21 hours and 54 minutes linked to the Station, Atlantis undocked at 6:45 p.m. EDT as Wilcutt and Altman fired Atlantis' jets to move to a distance of about 450 feet for a double-loop flyaround.

STS-92 (ISS Flight 3A)

Discovery Pad A

100th Shuttle mission 28th Flight of OV-103 1st Edwards Air Force Base landing since 1996

Crew:

Brian Duffy, Commander (4th Shuttle flight)
Pamela A. Melroy, Pilot (1st)
Leroy Chiao, Mission Specialist (3rd)
William "Bill" S. McArthur, Mission Specialist (3rd)
Peter "Jeff" J.K. Wisoff, Mission Specialist (4th)
Michael E. Lopez-Alegria, Mission Specialist (2nd)
Koichi Wakata, Mission Specialist (2nd)

(_____

OPF Bay 1 -- Dec. 27, 1999 **VAB** -- Aug. 24, 2000 **Pad 39B** -- Sept. 11, 2000

Orbiter Preps (move to):

Launch:

Oct. 11, 2000, 7:17:00 p.m. EDT.

STS-92 was scheduled to launch on Oct. 5, 2000. However, prior to loading cryogenics into the external tank, the mission was delayed when it was noted through film review on the previous mission (STS-106) that the right-hand external tank to orbiter attach bolt failed to retract properly. Following the scrub decision an orbiter liquid oxygen pogo accumulator re-circulation valve located in Discovery's Main Propulsion System failed to respond properly and a decision was made to remove and

replace the valve. The launch was rescheduled for Oct. 9.

The second launch attempt was postponed prior to tanking due to higher than acceptable winds at the pad preventing fueling of the external tank. The launch was delayed 24 hours and rescheduled for Oct.10. During the planned three-hour hold on the next launch attempt, a ground support equipment pin with a tether, used on access platforms, was observed on the external tank-to-orbiter liquid oxygen feed line during final pad inspections. The launch was postponed at the T-20 minute mark due to potential damage the pin and tether might cause to the orbiter during launch.

Launch was rescheduled 24 hours later and occurred without further delay on Oct.11 at 7:17 p.m. EDT.

Landing:

Oct. 24, 2000, 5 p.m. EDT.

Runway 22, Edwards Air Force Base, Calif. Rollout distance: 9,090 feet. Rollout time: 1 minute, 15 seconds. Mission duration: 12 days, 21 hours, 40 minutes, 25 seconds. Landed on orbit 202. Logged 5.3 million statute miles. Landing was originally scheduled at KSC on Oct. 22, 2000. However, landing opportunities at KSC were waived due to higher than allowable crosswinds at the SLF.

The next landing attempt was scheduled for Oct. 23, but winds remained in excess of limits at KSC. Landing opportunities at Edwards were also waived due to rain showers within 30 miles of the planned runway. Winds were again in excess of limits at KSC on the third day, and, as a result, all KSC opportunities were waived. The Space Shuttle Discovery landed on the first opportunity at Edwards Air Force Base.

Mission Highlights:

STS-92, during its 12-day mission to the International Space Station (ISS), completed all assigned objectives to install the Zenith Z1 Truss and the third pressurized mating adapter (PMA 3) for use as a docking port for subsequent Shuttle missions.

In the afternoon of flight day two, Discovery and her crew completed a successful rendezvous and docking with the International Space Station setting the stage for six days of construction and outfitting.

On flight day three, Japanese Astronaut, Koichi Wakata, deftly maneuvered Discovery's robotic arm to lift the Zenith Z1 Truss from the Shuttle's payload bay and berthed it to a port on the Unity connecting module. Inside Unity, Pilot Pam Melroy and crewmate Jeff Wisoff opened the hatch where the new truss was attached and installed grounding connections between the framework and the Station.

Discovery's five mission specialists, Leroy Chiao, Bill McArthur, Jeff Wisoff, Mike Lopez-Alegria and Koichi Wakata, performed a total of four extravehicular activities (EVA) during the STS-92 mission. They included the following assignments:

EVA No. 1 – 6-hours, 28-minutes:

Connection of electrical umbilicals to provide power to heaters and conduits located on the Z1 Truss; relocation and deployment of two communication antenna assemblies; and installation of a toolbox for use during on-orbit construction.

EVA No. 2 – 7 hours, 7 minutes:

Attachment of the PMA 3 to the ISS and preparation of the Z1 Truss for future installation of the solar arrays that will be delivered aboard STS-97 in late November.

EVA No. 3 – 6-hours, 48-minutes:

Installation of two DC-to-DC converter units atop the Z1 Truss for conversion of electricity generated by the solar arrays to the proper voltage.

EVA No. 4 – 6-hours, 56 minutes:

Testing of the manual berthing mechanism; deployment of a tray that will be used to provide power to the U.S. Lab; and removal of a grapple fixture from the Z1 Truss. Two small rescue backpacks that could enable a drifting astronaut to regain the safety of the spacecraft were also tested.

On flight day nine, the crew of Discovery shifted their attention to the interior of the ISS as they completed connections for the newly installed Z1 Truss external framework and began transferring equipment and supplies for the first resident crew of the ISS who arrived in November. They also successfully completed testing of the four control moment gyroscopes that will be used to orient the ISS as it orbits Earth.

STS-97 (ISS Flight 4A)

Endeavour Pad B

101st Shuttle mission 15th Flight of OV-105 53rd KSC landing

Crew:

Brent Jett, Commander (3rd Shuttle flight)
Michael Bloomfield, Pilot (2nd)
Joseph Tanner, Mission Specialist (3rd)
Carlos Noriega, Mission Specialist (2nd)
Marc Garneau, Mission Specialist (3rd),
Canadian Space Agency

Orbiter Preps (move to):

OPF Bay 2 -- Feb. 23, 2000 **VAB** -- Oct. 25, 2000 **Pad 39B** -- Oct. 31, 2000

Launch:

Nov. 30, 2000 at 10:06:01 p.m. EST.

Endeavour blasted off on time from Launch Pad 39B at the Kennedy Space Center on the 101st mission in Space Shuttle history. The crew of five astronauts were on the sixth construction flight for the International Space Station (ISS). There were no unscheduled holds or delays during the flawless countdown.

Landing:

Dec. 11, 2000 at 6:04:20 p.m. EST.

Landed on first opportunity at KSC, Runway 15, Kennedy Space Center, Fla. Main Gear Touchdown: 6:03:25 p.m. EST. Nose Gear Touchdown: 6:03:34 p.m. EST. Wheel Stop: 6:04:20. Rollout time: 57 seconds. Mission Elapsed Time: 10 days, 19 hours, 58 minutes. Distance on orbit: 4,476,164 million miles. Endeavour landed on orbit 171, marking the 16th night landing and the 53rd KSC landing in Space Shuttle history.

Mission Highlights:

On their 11-day mission, the astronauts completed three spacewalks, or EVAs, to deliver and connect the first set of U.S.-provided solar arrays to the International Space Station, prepare a docking port for arrival of the U.S. Laboratory Destiny, install Floating Potential Probes to measure electrical potential surrounding the Station, install a camera cable outside the Unity module, and transfer supplies, equipment and refuse between Endeavour and ISS.

On Flight Day 3, Commander Brent Jett linked Endeavour to the ISS while 230 statute miles above northeast Kazakhstan.

The successful checkout of the extravehicular mobility units (EMUs), the Simplified Aid for EVA Rescue (SAFER) units, the Remote Manipulator System (RMS), the Orbiter Space Vision System (OSVS) and the Orbiter Docking System (ODS) were all completed nominally. Also, the ODS centerline camera was installed with no misalignment noted.

From inside Endeavour, Mission Specialist Garneau used the RMS to remove the P6 truss from the payload bay, maneuvering it into an overnight park position to warm its components. Mission Specialists Joseph Tanner and Carlos Noriega moved through Endeavour's docking tunnel and opened the hatch to the ISS docking port to leave supplies and computer hardware on the doorstep of the Station.

On flight day 4, the Expedition One crew – Commander Bill Shepherd, Pilot Yuri Gidzenko and Flight Engineer Sergei Krikalev – entered the Unity module for

the first time and retrieved the items left for them.

EVA No. 1 – 7 hours, 33 minutes:

Tanner and Noriega mated the P6 to the Station's Z1 truss. The starboard or first half of the P6 solar array was unfurled only after several repeat commands were given because not all of the pins would release at first. The release of the port array was delayed to allow controllers to understand the problem encountered. Also deployed was one of three photovoltaic radiators that will dissipate heat generated by on-board electronics.

Later, the second solar wing was deployed slowly, with stops and starts. Two rows of solar panels stuck together but were loosened by retracting then extending the arrays again. The deployment brings the span of the solar arrays to 240 feet wide and 38 feet across.

EVA No. 2 - 6 hours, 37 minutes:

Tanner and Noriega worked to reconfigure electrical connections so that power from the P6 solar arrays can flow to the U.S. elements of the Station. They also prepared a docking port, Pressurized Mating Adapter 2, for its move from the forward end of the Unity module in January to another area on the Space Station. That will enable the U.S. Laboratory Destiny to be attached to Unity. The docking port then will be placed on the forward end of Destiny. Noriega and Tanner also moved the S-band antenna assembly to the top of the solar array tower and release restraints holding a radiator to the tower's side. Designed to help cool Destiny, the radiator was deployed after the spacewalk.

EVA No. 3 – 5 hours, 10 minutes:

A major task on this spacewalk was increasing tension on the solar array. By retracting the starboard wing, Noriega pulled the slack cables through each take-up reel. Tanner turned the spring-loaded tension reels then let them unwind while Noriega guided the cable onto the reel grooves, increasing the tension. In other activities, Tanner and Noriega installed a centerline camera cable outside the Unity module to transmit television images that will aid the next Shuttle crew to attach Destiny. They also installed the Floating Potential Probe, which measures the electrical potential of plasma around the Station.

Following Earth-based construction tradition when a building reaches its final height, the astronauts attached an evergreen tree – the image was on a transfer bag – to the FPP in a symbol of "topping out" the Space Station. Get-ahead tasks included installing a sensor on a radiator and small antennas, and doing a photo survey.

This third spacewalk brought the total spacewalk time for the mission to 19 hours and 20 minutes. The total of spacewalk time outside the Space Station is now 88 hours and 54 minutes.

At 9:36 a.m. EST on Friday, Dec. 8, the crew paid the first visit to the Expedition One crew residing in the Space Station. Until then the Shuttle and the Station had kept one hatch closed to maintain respective atmospheric pressures, allowing the Shuttle crew to conduct their spacewalks and mission goals. After a welcome ceremony and briefing, the eight spacefarers conducted structural tests of the Station and its solar arrays, transferred equipment, supplies and refuse back and forth between the spacecraft, and checked out the television camera cable installed by Tanner and Noriega for the upcoming mission.

On Dec. 9, the two crews completed final transfers of supplies to the Station and other items being returned to Earth. The Endeavour crew said farewell to the Expedition One crew at 10:51 a.m. EST and closed the hatches between the spacecraft.

After being docked together for 6 days, 23 hours and 13 minutes, Endeavour undocked from the Station at 2:13 p.m. EST. Piloted by Michael Bloomfield, it then made an hour-long, tail-first circle of the Station. The undocking took place 235 statute miles above the border of Kazakhstan and China. The final separation burn took place near the northeast coast of South America.

The final day was spent checking out the systems for landing and talking with reporters.

2001

STS-98 (ISS Flight 5A)

Atlantis Pad 39A

102nd Shuttle mission 23rd flight OV-104 47th EAFB landing

Crew:

Ken Cockrell, Commander (4th Shuttle flight) Mark Polansky, Pilot (1st) Robert Curbeam, Mission Specialist, (2nd) Thomas Jones, Mission Specialist, (4th) Marsha Ivins, Mission Specialist (5th)

Orbiter Preps (move to):

OPF bay 2 -- May 29, 2000 **VAB** -- Dec. 4, 2000 **Pad 39A** -- Jan. 3, 2001

VAB – Jan. 19, 2001 **Pad 39A** – Jan. 26, 2001

Launch:

Feb. 7, 2001 at 6:13 p.m. EST.

The STS-98 mission was launched as planned. The T-9 minute hold was extended 1 minute 14 seconds because of a concern with electrical current indications recorded in ground telemetry. The recording occurred at the T-20 minute hold when power was transferred from the ground systems to the onboard fuel cells. A review of vehicle data showed the problem did not exist on the orbiter and the countdown proceeded.

Atlantis was returned to the VAB on the scheduled launch day of Jan. 19 due to uncertainty involving the integrity of the SRB cables. X-ray analysis and continuity or "wiggle" tests were conducted on a total of 36 cables located in the system tunnels of both SRBs. Atlantis rolled back to the pad on Jan. 26 for a new launch date of Feb. 7.

Landing:

Feb. 20, 2001 at 3:33 p.m. EST.

Runway 22, Edwards Air Force Base, Calif. Main gear touchdown: 3:33:05 p.m. EST. Nose gear touchdown: 3:33:17 p.m. EST. Wheel stop: 3:34:02 p.m. EST. Rollout time: 57 seconds. Mission duration: 12 days, 20 hours, 20 minutes, 04 seconds. Landed on orbit 203. Logged about 5.3 million miles. The landing marked the 47th landing at Edwards AFB.

KSC landing opportunities were waived at KSC on three successive days because of excessive crosswinds and clouds at the Shuttle Landing Facility. Atlantis landed at Edwards Air Force Base on the third day.

Mission Highlights:

After docking to the International Space Station on day 2, Station and Shuttle crews opened hatches and unloaded supplies: three 12-gallon bags of water, a spare computer, cables to be installed inside the Station to power up Destiny, and various personal items for the Station crew.

On Feb. 10, the U.S. Laboratory Destiny was successfully installed on the International Space Station using the remote manipulator system (RMS) and concurrent extravehicular activities (EVAs).

Mission Specialist Marsha Ivins, using the RMS, grappled the pressurized mating adapter 2 on Node 1 and maneuvered it to the Z1 truss for a temporary stay. Then Ivins latched the RMS onto the U.S. Lab in the payload bay and lifted it out. She then flipped the 16-ton Lab 180 degrees and moved it into position to attach to Node 1. A set of automatic bolts tightened to hold it permanently in place.

On Feb. 11, Shepherd and Cockrell entered Destiny and activated air systems, fire extinguishers, alarm

systems, computers and internal communications, plus continued equipment transfers from the Shuttle to the Station. They also filmed onboard scenes using an IMAX camera.

On Feb. 13, ground controllers switched control of the Station's orientation to electrically powered gyroscopes – a milestone in Station assembly that will conserve propellants aboard the complex. Also, Cockrell and Ivins powered up Atlantis' robotic arm and used its cameras to view areas on a Station cooling radiator that appeared to have bubbling paint.

On Feb. 14, Shuttle and Station crews reopened hatches for transfer of equipment. The transfer was completed on Feb. 15. In all, 3,000 pounds of equipment and supplies – water, food, spare parts, a spare Russian carbon dioxide removal system, spare computer, clothes, movies and other items – were moved from Atlantis to the Station. About 850 pounds of trash were moved from the Station to Atlantis.

Atlantis departed the Station and Pilot Polansky flew the orbiter halfway around it before moving off for a landing on Feb. 18.

EVA No. 1 — 7 hours, 34 minutes:

Mission Specialists Curbeam and Jones began their EVA at 10:18 a.m. EST Feb. 10, 2001, to connect electrical, data and cooling lines. They also reopened the hatches between Atlantis and the Station. Commander Ken Cockrell and ISS Commander Bill Shepherd, using a laptop computer, remotely powered up key laboratory systems and cooling equipment in Destiny.

While Curbeam was attaching a cooling line, a small amount of frozen ammonia crystals leaked but was quickly stopped. The ammonia dissipated and vaporized and posed no problems as the crew continued their work. Decontamination actions were taken later to ensure no ammonia would enter Atlantis' cabin. Curbeam remained in the sun a half-hour to vaporize any ammonia crystals on his spacesuit while Jones brushed off the suit and equipment. The spacewalkers then performed a partial pressurization and venting of the shuttle airlock to flush out any ammonia before final repressur-ization. Cockrell and Pilot Mark Polansky and Ivins wore oxygen masks in the cabin for about 20 minutes as a protective measure.

EVA No. 2 -6 hours, 50 minutes:

At 10:40 a.m. EST Feb. 12, 2001, Jones and Curbeam exited Atlantis' airlock and moved to the Pressurized Mating Adapter (PMA) 2, or docking port. Ivins used the RMS to latch onto the PMA 2, stowed earlier on the Z1 truss, and removed it with the help of visual cues by Jones and Curbeam. The two spacewalkers then moved to the U.S. Lab and again provided visual cues as Ivins moved the PMA 2 into its new position on the end of the Lab. The PMA 2 will become the primary docking port for future Shuttle visits.

Other tasks for the spacewalkers included installing insulating covers over the pins that held Destiny in place during launch, attaching a vent to part of the Lab's air system, putting wires, handrails and sockets on the exterior of Destiny for future spacewalkers, and attaching a base for the future Space Station robotic arm (SSRMS). Working ahead, Jones and Curbeam connected several computer and electrical cables between the docking port and Lab, unveiled the Lab's large, high-quality window and attached an exterior shutter, and repositioned a movable foot platform.

EVA No. 3 – 5 hours, 25 minutes:

Feb. 14, 2001, the two spacewalkers attached a spare communications antenna to the Station's exterior, double-checked connections between Destiny and PMA 2, release a cooling radiator on the Station, inspected solar array connections at the top of the Station, and tested the ability of a spacewalker to carry an immobile crew member back to the Shuttle airlock.

STS-102 (ISS Flight 5A.1)

Discovery Pad 39B

103rd Shuttle mission 29th flight OV-103 12th nighttime KSC landing

Crew:

James Wetherbee, Commander (5th Shuttle flight) James Kelly, Pilot (1st) Andrew Thomas, Mission Specialist, (3rd) Paul Richards, Mission Specialist, (1st)

ISS Resident Crew, Expedition Two James Voss, Mission Specialist (4th) Susan Helms, Mission Specialist (4th) Yury Usachev, Mission Specialist (2nd), Russian Aviation and Space Agency

Returning Crew, Expedition One
Bill Shepherd, Commander
Yuri Gidzenko, Pilot,
Russian Aviation and Space Agency
Sergei Krikalev, Flight Engineer,
Russian Aviation and Space Agency

Orbiter Preps (move to):

OPF bay 2 -- Nov. 3, 2000 **VAB** -- Feb. 1/2, 2001 **Pad 39B** -- Feb. 12, 2001

Launch:

March 8, 2001 at 6:42:09 a.m. EST.

Launch occurred at sunrise. Discovery embarked on a mission to deliver the second resident crew to the International Space Station.

Landing:

March 21, 2001 at 2:31 a.m. EST.

Runway 15, Kennedy Space Center, Fla. Main gear touchdown 2:31:42; nose wheel touchdown 2:31:54; wheel stop 2:33:06. Rollout distance: 11,405 feet. Rollout time: 01:24. Mission duration: 12 days, 19 hours, 49 minutes. Landed on orbit 102. Logged about 5.3 million statute miles. Landed on the second of two Florida landing opportunities. The landing marked the 12th night landing at KSC, and the 17th night landing overall.

Mission Highlights:

A sunrise launch carried the second resident crew to the International Space Station as well as the first Multi-Purpose Logistics Module, Leonardo, full of supplies and equipment plus science racks for transfer to the U.S. Laboratory Destiny.

Joint operations between the Shuttle crew and the Station crews resulted in unloading almost five tons of experiments and equipment from Leonardo and packing almost one ton of items for return to Earth. Discovery's spacewalkers—James Voss, Susan Helms, Andrew Thomas and Paul Richards—set the stage for continued expansion of the Station by installing a platform that will be used to mount a Canadian-built robotic arm, the Space Station Remote Manipulator System (SSRMS), to the Station on a future mission.

Discovery docked with the Station at 1:38 a.m. EST on March 10. Hatches between the two spacecraft opened at 3:51 a.m. EST. All 10 crew members greeted each other for several minutes in the Destiny module. The first Expedition Two crew member to trade places was Yury Usachev, replacing Yuri Gidzenko on March 10. James Voss swapped places with Sergei Krikalev on March 11, and Susan Helms swapped with Bill Shepherd on March 14. A formal transfer of command was conducted on March 19 as Commander Bill Shepherd passed responsibility for the Station to Yury Usachev.

EVA No. 1 – 8 hours, 56 minutes:

Helms and Voss began a record-breaking spacewalk at 12:12 a.m. March 11. They prepared the Pressurized Mating Adapter-3 to be moved from the Unity module to make room for Leonardo. They

removed an antenna from the Common Berthing Mechanism to allow the PMA-3 to be temporarily stowed there while Leonardo was connected to the Station. They also removed a Lab Cradle Assembly from Discovery's cargo bay and installed it on the side of the U.S. Lab Destiny. There it will form the base for the SSRMS being delivered on a mission in April.

The spacewalk ended at 9:08 a.m. EST, marking the longest spacewalk in Shuttle history.

Mission Specialist Andrew Thomas lifted Leonardo out of Discovery's cargo bay at 11:10 p.m. EST on March 11 and maneuvered it into place on the Common Berthing Mechanism. The docking was completed at 1:02 a.m. EST March 12 when Commander Wetherbee activated the latches to seal the components.

EVA No. 2—6 hours, 21 minutes:

Beginning the second spacewalk at 12:23 a.m. March 13, Richards and Thomas installed an External Stowage Platform for spare Station parts and attached a spare ammonia coolant pump to the platform. They also connected several cables on the exterior of Destiny that were placed previously by Helms and Voss during the first spacewalk. The cable will provide heater power and control for the yet-to-come robotic arm.

STS-100 (ISS Flight 6A)

Endeavour Pad 39A

104th Shuttle mission 16th flight OV-105 48th EAFB landing

Crew:

Kent V. Rominger, Commander (5th Shuttle flight)
Jeffrey S. Ashby, Pilot (2nd)
Chris A. Hadfield, Mission Specialist, (2nd), CSA
Scott E. Parazynski, Mission Specialist, (4th)
John L. Phillips, Mission Specialist (1st)
Umberto Guidoni, Mission Specialist (2nd), ESA
Yuri Lonchakov, Mission Specialist (1st),
Russian Aviation & Space Agency

Orbiter Preps (move to):

OPF bay 2 -- Dec. 11, 2000 **VAB** -- March 17, 2001 **Pad 39A** -- March 22, 2001

Launch:

April 19, 2001, at 2:40:42 p.m. EDT.

Space Shuttle Endeavour lifted off on time carrying a multi-national crew and payloads that included the Canadian-built Space Station Remote Manipulator System (SSRMS) and the Multi-Purpose Logistics Module Raffaello.

Landing:

May 1, 2001, at 12:10:42 p.m. EDT.

Runway 22, Edwards Air Force Base. Rollout distance: 7,964 feet. Rollout time: 01:14. Mission duration: 11 days, 12 hours, 54 minutes. Landed on orbit 186. Logged about 4.9 million statute miles. Landed on the first of two EAFB landing opportunities after being waved off two times at KSC due to unfavorable weather conditions.

Mission Highlights:

Docking with the International Space Station occurred at 9:59 a.m. EDT April 21.

The advanced robotic arm, called Canadarm2, was attached to a pallet on the outside of Destiny. It later was directed to "walk off" the pallet and grab onto an electrical grapple fixture on the Lab which would provide data, power and telemetry to the arm. Days later the arm was used to hand off the cradle, on which it rested inside Endeavour's payload bay during launch, to the orbiter's arm. The exchange of the cradle from Station arm to Shuttle arm marked the first ever robotic-to-robotic transfer in space.

The 6,000 pounds of cargo inside the Multi-Purpose Logistics Module Raffaello was transferred to the Station, including two new scientific experiment racks for Destiny and the first three U.S. commercial payloads. In turn, 1,600 pounds of material were stored inside Raffaello for return to Earth.

On April 23, four days after launch, the hatches between Endeavour and the Space Station were opened, allowing the Shuttle crew and Station crew to greet another for the first time.

Other crew activities during the mission included attaching an ultrahigh frequency antenna on the outside of the Station and, inside, calibrating the Space Vision System, an alignment aid for operating the robotic arm, plus helping repair the Space Station's treadmill and filming for IMAX.

EVA No. 1 – 7 hours, 10 minutes:

On April 22, Mission Specialists Scott Parazynski and Chris Hadfield removed the Ultrahigh Frequency antenna from the pallet and installed it on the U.S. Lab Destiny. Then they unfolded the Canadian arm and, while it was still secure in its pallet, attached one end to Destiny. Next they connected cables to give the arm computer communication with the Lab and secured the fasteners to keep the booms in rigid position.

EVA No. 2 – 7 hours, 40 minutes:

On April 24, Hadfield and Parazynski connected the Power and Data Grapple Fixture circuits on Destiny for the SSRMS. They also removed an early communications antenna and transferred a spare Direct Current Switching Unit from Endeavour's payload bay to an equipment storage rack on Destiny.

As the astronauts rewired power and data connections for the arm, the backup power circuit failed to respond to commands from Station flight engineer Susan Helms, operating a workstation inside Destiny. Disconnecting and reconnecting the cables at the base of the arm resolved the situation and the redundant power path to the arm was completed.

Computer problems surfaced late on April 24 when flight controllers for the Station experienced a loss of Command and Control computer No. 1, one of three computers on board for systems management. The result was a loss of communi-cation and data transfer between the Space Station Flight Control Room in Houston and the Station. Communication was routed through Endeavour, which enabled the Station crew and flight controllers to talk to one another. No computer problems were encountered on Endeavour. Activities involving the SSRMS were postponed.

Station flight engineer Susan Helms, using a laptop computer, was able to restore the ground's ability to monitor and send commands to the Station's U.S. systems. Through the laptop, data from the Station computers could be transmitted to the ground for analysis and investigation of the problems.

Computer restoration continued successfully, especially C&C number three. C&C number one was found to have a failed hard drive. It was replaced by a backup payload computer.

Ground controllers successfully synchronized timers on all on-board computers and investigated an error in the software load that might have caused the computer problem. With one operational C&C computer in Destiny and a back-up laptop in Unity, the undocking procedure for Raffaello was given the go-ahead.

Endeavour undocked from the Space Station April 29 at 1:34 p.m. EDT. Pilot Jeff Ashby performed a three-quarter circle flyaround of the Station and at 2:28 p.m. fired a separation burn for final departure.

STS-104 (ISS Flight 7A)

Atlantis Pad 39B

105th Shuttle mission 24th flight OV-103 50th KSC landing

Crew:

Steven W. Lindsey, Commander (3rd Shuttle flight) Charles O. Hobaugh, Pilot (1st) Janet Lynn Kavandi, Mission Specialist (3rd) Michael L. Gernhardt, Mission Specialist (4th) James F. Reilly, Mission Specialist (2nd)

Orbiter Preps (move to):

OPF bay 2 -- March 6, 2001 **VAB** -- May 29, 2001 **Pad 39B** -- June 21, 2001

Launch:

July 12, 2001 at 5:03:59 a.m. EDT.

Lifted off on time to deliver the joint airlock module to the International Space Station. This mission marked end of second phase of Station assembly.

Landing:

July 24, 2001, at 11:39 p.m. EDT.

Runway 15, Kennedy Space Center, Fla. Rollout distance: 10,858 feet. Rollout time: 01:41. Mission duration: 12 days, 18 hours, 36 minutes. Landed on orbit 200. Logged about 5.3 million statute miles. After a 24-hour wave-off due to weather concerns, Atlantis landed on the first of two Florida landing opportunities. The landing marked the 50th landing at KSC, and the 18th nighttime landing.

Mission Highlights:

After docking with the ISS on July 13, both Atlantis and ISS crews reviewed EVA procedures. In a series of three spacewalks, the joint airlock module was attached to the Unity Node and high-pressure gas tanks attached to the airlock, christened "Quest." The crews tested nitrogen and oxygen lines for use on future Shuttle missions and installed valves to connect Quest to the ISS environmental control system. They also installed a computer to run the airlock's systems. Air bubbles in a coolant line caused a water spill – cleanup caused a task to be postponed to another day. Astronauts replaced a leaky air circulation valve and moved the hatch for the airlock into position between the Equipment Lock and Crew Lock.

Kavandi, Gernhardt and Reilly transferred items between the Shuttle and Station, storing equipment and space suits in the airlock.

Both Station and Shuttle crews checked out and activated the new Quest airlock, conducting a dry run before the inaugural event.

EVA No. 1-5 hours, 59 minutes:

On July 15 Spacewalkers Michael Gernhardt and James Reilly removed an insulating cover from the airlock's berthing mechanism and covers from its seals plus installed bars on the airlock that are attachment points for four high-pressure gas tanks. Expedition Two crew member Susan Helms then lifted the airlock out of Atlantis's payload bay using the Canadarm2 and maneuvered it to the berthing port on the Unity Node. Gernhardt and Reilly provided additional guidance from outside the ISS. Gernhardt then attached heating cables from the ISS to the airlock and Reilly positioned foot restraints needed for the second EVA.

EVA No. 2 - 6 hours, 29 minutes:

(the 66th spacewalk in Shuttle history and 23rd for ISS assembly)

On July 18, Gernhardt and Reilly installed three tank assemblies for the joint airlock with the help from both the Shuttle's Canadarm and the Station's Canadarm2.

EVA No. 3 – 4 hours, 2 minutes:

(the 24th spacewalk devoted to ISS assembly, totaling 155 hours, 39 minutes).

On July 21, Gernhardt and Reilly exited the new airlock and, with support from the Station and Shuttle robotic arms, attached a nitrogen supply tank to the airlock's shell. This completed installation of two nitrogen and two oxygen tanks that will be used to pressurize the airlock and resupply space suits. The astronauts also moved hand-over-hand up the Station's solar array truss to take a look at a gimbal assembly mechanism that allows the arrays to swivel with the Sun.

STS-105 (ISS Flight 7A.1)

Discovery Pad 39A

106th Shuttle mission 30th flight OV-103 56th KSC landing

Crew:

Scott "Doc" Horowitz, Commander (4th Shuttle flight) Rick Sturckow, Pilot (2nd) Daniel Barry, Mission Specialist (3rd) Patrick Forrester, Mission Specialist (1st) ISS Resident Crew, Expedition Three: Frank Culbertson, Commander Vladimir Dezhurov, Cosmonaut Mikhail Tyurin, Cosmonaut

Returning Crew, Expedition Two: Yuri Usachev, Cosmonaut Susan Helms James Voss

Orbiter Preps (move to):

OPF bay 2 -- March 21, 2001 **VAB** -- June 13, 2001 **Pad 39A** -- July 2, 2001

Launch:

Aug. 10, 2001 at 5:10 p.m. EDT.

The scheduled launch on Aug. 9, 2001, was scrubbed due to lightning, thick cloud cover and potential showers. Launch proceeded the following day; however, due to expected bad weather, the launch occurred at the opening of the planer window, 5 minutes earlier than the planned 5:15 p.m. preferred launch time.

Landing:

Aug. 22, 2001, at 2:23 p.m. EDT.

Runway 15, Kennedy Space Center, Fla. Main gear touchdown was at 2:22:58 p.m. EDT, wheel stop at 2:24:06 p.m. EDT. Rollout distance: 10,036 feet. Rollout time: one minute, 8 seconds. Mission duration: 11 days, 19 hours, 38 minutes. Landed on orbit 186. Logged about 4.3 million statute miles. Landed on the second of two Florida landing opportunities. The landing marked the 56th landing at KSC.

Mission Highlights:

After linkup of Shuttle Discovery to the International Space Station, hatches were opened and crews greeted one another. Part of the mission was to bring the next resident crew, Expedition Three, to the ISS and return Expedition Two to Earth. The payload included the Early Ammonia Servicer (EAS), to be installed on the outside of the ISS, and MPLM Leonardo.

On the fifth day of the mission, Aug. 16, Discovery maintained control of the Space Station while Russian flight controllers completed loading upgraded software commands to the Zvezda module. After completion of the upgrade, the Zvezda module again assumed control of the station's attitude, or position in space.

During the time docked with the ISS, crews unloaded 7,000 pounds of supplies, equipment and science racks from the MPLM Leonardo, storing it on the Space Station. This was the second flight of the Leonardo to the ISS.

EVA No. 1 – 6 hours, 16 minutes:

Mission Specialists Forrester and Barry com-

pleted the first of two Extra-Vehicular Activities to install the EAS on Aug. 16, 2001. The EAS contains spare ammonia that can be used the in the Space Station's cooling systems if needed. During the EVA, Discovery Commander Horowitz operated the Shuttle robot arm and Pilot Sturckow choreographed the spacewalk from the orbiter's flight deck.

On Aug. 17, in a special ceremony, the Expedition Two crew handed over command of the ISS to Expedition Three. Briefings followed as well as stowing equipment, discarded items and belongings of Expedition Two into the MPLM Leonardo.

EVA No. 2 – 5 hours, 29 minutes:

Barry and Forrester completed their second EVA on Aug. 18, 2001, setting the stage for delivery of the S0 Integrated Truss Structure that is planned for 2002. They strung heater cables and installed hand rails on both sides of the U.S. Lab Destiny.

This EVA was the 26th devoted to assembly of the ISS, and the 68th spacewalk in Shuttle program history. It also marked 431 hours, 39 minutes of total spacewalk time in Shuttle history.

On Aug. 20, the Discovery crew undocked from the ISS and performed a fly-around. They later deployed a small science satellite, Simplesat, via a spring ejection from a canister at the rear of the cargo bay.

STS-108 (ISS Flight UF-1)

Endeavour Pad 39B

107th Shuttle mission 17th flight OV-105 57th KSC landing

Crew:

Dominic L. Gorie, Commander (3rd Shuttle flight) Mark E. Kelly, Pilot (1st) Linda A. Godwin, Mission Specialist (4th) Daniel M. Tani, Mission Specialist (1st)

ISS Resident Crew, Expedition Four: Yuri Onufrienko, Commander Daniel W. Bursch, Flight Engineer Carl E. Walz, Flight Engineer

Returning Crew, Expedition Three: Frank Culbertson, Commander

Vladimir Dezhurov, Pilot Mikhail Tyurin, Flight Engineer

Orbiter Preps (move to):

OPF bay 2 -- May 10, 2001 **VAB** -- Oct. 24, 2001 **Pad 39B** -- Oct. 31, 2001

Launch:

Dec. 5, 2001, at 5:19 p.m. EST.

The launch of Space Shuttle Endeavour on Nov. 29 was rescheduled for Tuesday, Dec. 4, to allow sufficient time for the Expedition Three crew on the Space Station to successfully complete a spacewalk to clear an obstruction on the latching mechanism on the Russian Progress supply vehicle.

The launch Dec. 4 was postponed due to unsatisfactory weather conditions in the KSC area. Launch controllers counted down to the T-5 minute point and held until the remainder of the window expired. The scrub had to be called after Astronaut Office Chief Charles Precourt, flying the Shuttle Training Aircraft, detected precipitation in a cloud mass that moved into the Complex 39 area shortly before launch.

Endeavour lifted off Dec. 5 on the final space Shuttle mission of 2001 to deliver three tons of supplies and a fresh crew to the International Space Station, and return home a crew that spent four months in space

In addition to a new Station crew and supplies, Endeavour carried a host of scientific investigations, including experiments from space agencies, schools and universities across the United States, Europe and South America, as well as a small satellite that involved more than 25,000 students in 26 countries.

Landing:

Dec. 17, 2001, at 12:55 p.m. EST.

Runway 15, Kennedy Space Center, Fla. Main gear touchdown was at 12:55:11 p.m. EST; nose gear touchdown at 12:55:23 p.m.; wheel stop at 12:56:18 p.m. EST. Rollout distance: 8,941 feet. Mission duration: 11 days, 19 hours, 55 minutes. Landed on orbit 186. Logged about 4.8 million statute miles. Landed on the first of two Florida landing opportunities. The landing marked the 57th landing at KSC.

Mission Highlights:

Shuttle Commander Dom Gorie brought Endeavour to a gentle linkup with the ISS at 3:03 p.m. EST as the two craft sailed over England. Within minutes, Pilot Mark Kelly and Mission Specialists Linda Godwin and Dan Tani began to conduct post-docking checks of the mechanical interface between Endeavour and the Station's Destiny Laboratory prior to the opening of the hatches on the two vehicles. At first, the Shuttle's docking ring and the docking mechanism on the ISS did not align properly, but

after allowing the two craft to dampen their relative motion against one another, the vehicles were hard mated for a week of joint operations by the 10 crew members.

The hatches were opened between Endeavour and the ISS Destiny Laboratory at 5:42 p.m. EST Dec. 7, enabling the ten crew members to greet one another. The Expedition Three crew officially ended their 117-day residency on board the International Space Station Dec. 8 as their custom Soyuz seatliners were transferred to Endeavour for the return trip home. The transfer of the Expedition Four seatliners to the Soyuz return vehicle attached to the Station marked the official exchange of crews.

Endeavour Pilot Mark Kelly and Mission Specialist Linda Godwin used the Shuttle's robotic arm to lift the Raffaello Multi-Purpose Logistics Module from the Shuttle payload bay and attach it to a berth on the Station's Unity node. The crews began unloading supplies the same day.

The 10 astronauts and cosmonauts in orbit took a break from the transfer of supplies, experiments and equipment to and from the Space Shuttle Endeavour and the International Space Station to pay tribute to the heroes of the Sept. 11 attacks on New York and the Pentagon. Joined by flight controllers in Mission Control, the crews observed the playing of the U.S. and Russian national anthems at 8:46 a.m. EST, the three-month anniversary of the first impact at the World Trade Center.

Also, aboard Endeavour were 6,000 small United States flags that would be distributed to heroes and families of the victims of the attacks after the Shuttle returned to Earth; a U.S. flag that was found at the World Trade Center site after the attacks; a U.S. flag that had flown above the Pennsylvania state capitol; a U.S. Marine Corps Colors flag from the Pentagon; a New York Fire Department flag; and a poster that included photographs of firefighters lost in the attacks.

EVA – 4 hours, 12 minutes:

Endeavour astronauts Linda Godwin and Dan Tani completed the spacewalk to install insulation on mechanisms that rotate the International Space Station's main solar arrays. The two spacewalkers stopped at a stowage bin to retrieve a cover that had been removed from a Station antenna during an earlier flight, and after its return to Earth, may be reused. Godwin and Tani also performed a "get-ahead" task, positioning two switches on the Station's exterior to be installed on a future Shuttle mission, STS-110. The spacewalk completed a record year with 18 spacewalks conducted: 12 originating from the Shuttle and six from the Station.

Mission managers extended Endeavour's flight to a duration of 12 days to allow Endeavour's crew to assist with additional maintenance tasks on the Station, including work on a treadmill and replacing a failed compressor in one of the air conditioners in the Zvezda Service Module.

The astronauts and cosmonauts completed the transfer of more than 5,000 pounds of supplies and material from Endeavour's mid-deck and the Raffaello Multi-Purpose Logistics Module to the Station. The transferred items included more than 850 pounds of food, 1,000 pounds of clothing and other crew provisions, 300 pounds of experiments and associated equipment, 800 pounds of spacewalking gear, and 600 pounds of medical equipment. In turn, the crew packed up the Raffaello module with items bound for a return trip to Earth.

On Dec. 12, the crew and Mission Control noted a transient problem with one of the Shuttle's three inertial measurement units (IMUs), the primary navigation units for the Shuttle. Only two of the three IMUs were on line at the time, with the third unit off line to save electricity. The IMU that experienced a problem, designated IMU 2, was immediately taken off line and the third IMU brought on line. IMU 2 operated well after that, but it remained off line and was considered failed by flight controllers. The loss of one IMU had no impact on Endeavour's mission, and the other two units operated in excellent condition.

A formal change of command ceremony took place Dec. 13 as Expedition Three ended their residence and Expedition Four began theirs.

Flight controllers planned slight changes to Endeavour's departure from the Station Dec. 15, allowing time for a small jet firing by the Shuttle to boost the Station's future path away from a piece of space debris that could pass near the complex. Mission Control was notified that a spent Russian rocket upper stage launched in the 1970s could pass within three miles of the Station if Endeavour did not perform the engine firing. With the Shuttle reboost, the Station was predicted to pass more than 40 miles away from the debris.

Because the scheduled reboost used additional propellant, Endeavour did not perform a full-circle flyaround of the Station after undocking. Instead, the Shuttle undocked from the Station, performing a quarter circle flyaround of the complex to a point about 400 feet directly above the Station where it fired its engines in a final separation burn at 12:20 a.m. EST, beginning its departure from the orbiting outpost.

Endeavour's middeck carried home the results of several experiments completed during Expedition Three's stay on the Station. These included the Advanced Protein Crystallization Facility, the Dynamically Controlled Protein Crystal Growth experiment and cells from the Cellular Biotechnology Operations Support System (CBOSS).

The CBOSS equipment aboard the Space Station will remain active during Expedition Four, growing ovarian and colon cancer cells, as well as kidney cells in microgravity.

Experiments in Endeavour's payload bay were returned for investigators around the world. The Multiple Application Customized Hitchhiker-1 (MACH-1) carried a wide array of experiments, including the Prototype Synchrotron Radiation Detector, the Collisions Into Dust

Experiment-2, the Capillary Pump Loop, and the Space Experiment Module (SEM). The SEM carried experiments from Argentina, Portugal, Morocco and Australia, as well as experiments from U.S. schoolchildren. Several other canisters in Endeavour's payload bay also carried student experiments.

On its return to Earth, Endeavour's crew deployed a

small satellite called STARSHINE 2 from a canister located in the payload bay. More than 30,000 students from 660 schools in 26 countries will be tracking STARSHINE 2 as it orbits the Earth for eight months. The students, who helped polish STARSHINE's 845 mirrors, will use the information they collect to calculate the density of the Earth's upper atmosphere.

Launch of Space Shuttle Discovery on mission STS-105 to the International Space Station Aug. 10, 2001.

National Aeronautics and Space Administration

John F. Kennedy Space Center Kennedy Space Center, Fla. 32899 AC 321 867-2468

FS-2002-01-001-KSC February 2002